

28" Stretch Color TFT-LCD

Release Date 27th Sept 2024

THIS DOCUMENT CONTAINS PROPRIETORY INFORMATION WHICH IS SOLELY OWENED BY 'HIGHNESS MICROELECTRONICS LTD." ANY UNAUTHORISED COPY OR PRINTING OR PUBLISHING OF INFORMATION IN THIS DOCUMENT IN PART OR IN COMPLETE IS RESTRICTED.

HIGHNESS MICROELECTRONICS LTD.

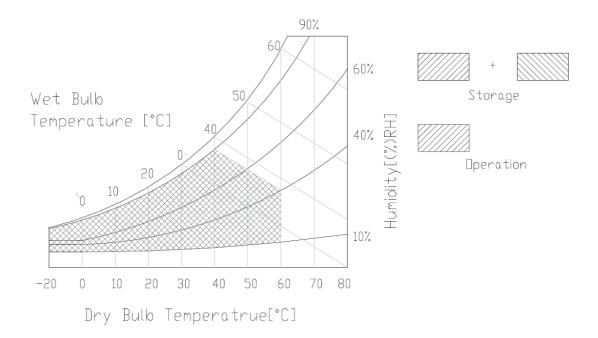
URL: www.highnessmicro.com, Email:sales@highnessmicro.com

1. General Description

Items	Specification	Unit	Note
Active Screen Size	28.0	inch	
Display Area	698.4 (H) x 130.95(V)	mm	4
Outline Dimension	734.1 (H) x 162.64 (V) x 17.3 (D)	mm	
Driver Element	a-Si TFT active matrix		
Display Colors	8 bit (16.7 million)	Colors	8 bit selectable
Number of Pixels	1920x360	Pixel	
Pixel Pitch	0.3637 (H) x 0.3637 (W)	mm	
Pixel Arrangement	RGB vertical stripe		
Display Operation Mode	Normally Black		
Surface Treatment	Anti-Glare, 3H		Haze = 28%
Frame Rate	60	Hz	
LED MTTF	70K	hours	

2. Absolute Maximum Ratings

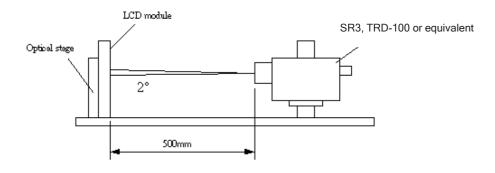
The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit


Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	V_{DD}	-0.3	14	[Volt]	Note 1
Input Voltage of Signal	Vin	-0.3	4	[Volt]	Note 1
Operating Temperature	TOP	-20	+60	[°C]	Note 2
Operating Humidity	HOP	10	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 2
Storage Humidity	HST	10	90	[%RH]	Note 2
Panel Surface Temperature	PST		65	[°C]	Note 3

Note 1: Duration:50 msec.

Note 2 : Maximum Wet-Bulb should be 39°C and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of 40 $^{\circ}$ C or less. Attemperatures greater than 40 $^{\circ}$ C, the wet bulb temperature must not exceed 39 $^{\circ}$ C.


Note 3: Surface temperature is measured at 50°C Dry condition

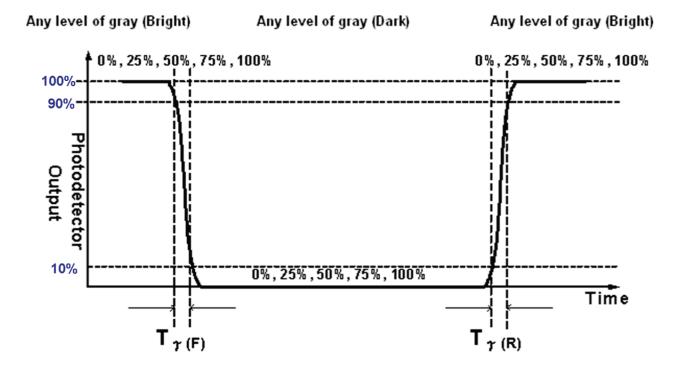
3. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 45 minutes in a dark environment at 25°C. The values specified are at an approximate distance 500 mm from the LCD surface at a viewing angle of ϕ and θ equal to 0°.

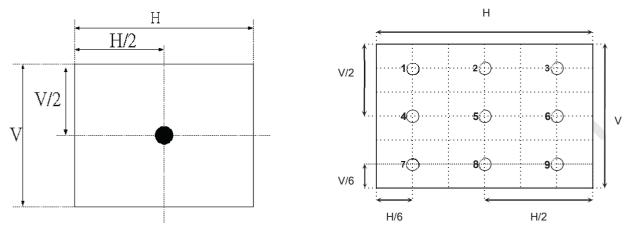
Fig.1 presents additional information concerning the measurement equipment and method.

_	_			Linit			
F	Parameter	Symbol	Min.	Тур.	Max	Unit	Notes
Contrast Ratio	0	CR	3200	4000			1
Surface Lumii	nance (White)	Lwh	800	1000		cd/m ²	2
Luminance Va	ariation	δwhite(9P)			1.33		3
Response Tin	ne (G to G)	Тү		8	16	ms	4
Color Gamut		NTSC		72		%	
Gamma		Gma	1.9	2.2	2.5		
Color Coordin	nates						
Re	ed	Rx		0.653			
		R _Y	=	0.336			
Gr	reen	Gx	-	0.323			
		G _Y	T 0.00	0.615	T + 0.00		
Bli	ue	Bx	Typ0.03	0.152	Typ.+0.03		
		By	-	0.067			
W	hite	Wx	-	0.313			
		WY	-	0.329			
Viewing Angle	Э						
ха	axis, right(φ=0°)	θ_{r}	85	89		degree	
ха	axis, left(φ=180°)	θι	85	89		degree	5
у а	axis, up(φ=90°)	θυ	85	89		degree	
уа	axis, down (φ=270°)	θ_{d}	85	89		degree	

Note:


1. Contrast Ratio (CR) is defined mathematically as:

- 2. Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels displaying white. From more information see FIG 2. LED current I_F = typical value (without driver board), LED input VDDB =24V, I_{DDB}. = Typical value (with driver board), L_{WH}=Lon5 where Lon5 is the luminance with all pixels displaying white at center 5 location.
- 3. The variation in surface luminance, δWHITE is defined (center of Screen) as: δwHITE(9P)= Maximum(Lon1, Lon2,...,Lon9)/ Minimum(Lon1, Lon2,...Lon9)
- 4. Response time T_{γ} is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on Frame rate = 60Hz to optimize.


Me	asured	Target									
Response Time		0% 25%		50%	75%	100%					
	0%		0% to 25%	0% to 50%	0% to 75%	0% to 100%					
	25%	25% to 0%		25% to 50%	25% to 75%	25% to 100%					
Start	50%	50% to 0%	50% to 25%		50% to 75%	50% to 100%					
	75%	75% to 0%	75% to 25%	75% to 50%		75% to 100%					
	100%	100% to 0%	100% to 25%	100% to 50%	100% to 75%						

T_Y is determined by 10% to 90% brightness difference of rising or falling period. (As illustrated)

The response time is defined as the following figure and shall be measured by switching the input signal for "any level of gray(bright) " and "any level of gray(dark)".

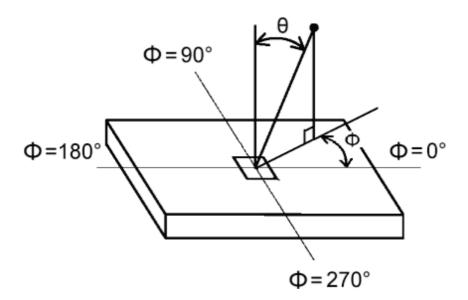


FIG. 2 Luminance

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG3.

FIG.3 Viewing Angle

4. Interface Specification

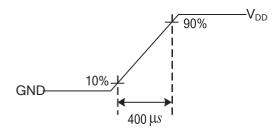
4.1 Input power

The HM280FH111VL module requires power inputs which are employed to power the LCD electronics and to drive the TFT array and liquid crystal.

Item		Symbol	Min.	Тур.	Max	Unit	Note
Power Supply Input Voltage	V_{DD}	10.8	12	13.2	V	1	
Davier County In not Course	Black pattern	1		0.3	0.36	Α	
Power Supply Input Current	White pattern	IDD		0.42	0.51	Α	2
Dower Consumption	Black pattern	Б		3.6	4.3	Watt	2
Power Consumption	White pattern	Pc		5.1	6.2	Watt	
Inrush Current					3	Α	3

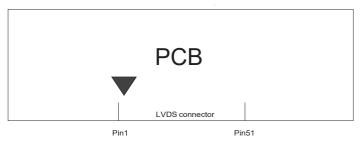
Note1. The ripple voltage should be fewer than 5% of VDD.

Note2. Test Condition:


- (1) V_{DD} = 12.0V, (2) Fv = 60Hz, (3) Fclk= 74.25MHz, (4) Temperature = 25 d
- (5) Power dissipation check pattern. (Only for power design)
- a. Black pattern

b. White pattern

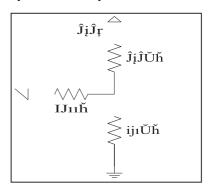
Note3. Measurement condition: Rising time = 400us


4.2 Input Connection

■ LCD connector: FI-RTE51SZ-HF (JAE, LVDS connector) or compatible (CHIEF LAND 115E51-0000RA -M3-R / P-two 187059-5122)

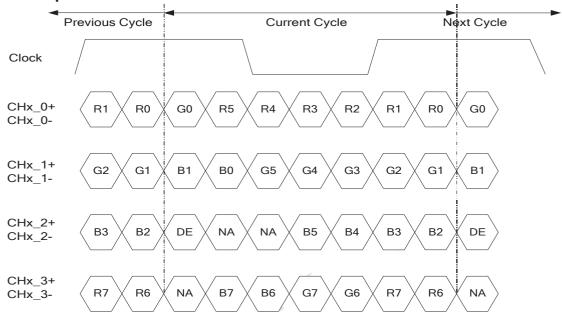
PIN	Symbol	Description	Note
1	N.C.	No connection	2
2	N.C.	No connection	2
3	N.C.	No connection	2
4	N.C.	No connection	2
5	N.C.	No connection	2
6	N.C.	No connection	2
7	LVDS_SEL	Open/High (3.3V) for NS, Low (GND) for JEIDA	3
8	N.C.	No connection	2
9	N.C.	No connection	2
10	N.C.	No connection	2
11	GND	Ground	
12	CH1_Y0-	LVDS Channel 1, Signal 0-	
13	CH1_Y0+	LVDS Channel 1, Signal	
14	CH1_Y1-	LVDS Channel 1, Signal 1-	
15	CH1_Y1+	LVDS Channel 1, Signal 1+	
16	CH1_Y2-	LVDS Channel 1, Signal 2-	
17	CH1_Y2+	LVDS Channel 1, Signal 2+	
18	GND	Ground	
19	CH1_CLK-	LVDS Channel 1, Clock -	
20	CH1_CLK+	LVDS Channel 1, Clock +	
21	GND	Ground	
22	CH1_Y3-	LVDS Channel 1, Signal 3-	
23	CH1_Y3+	LVDS Channel 1, Signal 3+	
24	N.C.	No connection	2
25	N.C.	No connection	2
26	N.C.	No connection	
27	N.C.	No connection	
28	CH2_Y0-	LVDS Channel 2, Signal 0-	
29	CH2_Y0+	LVDS Channel 2, Signal 0+	
30	CH2_Y1-	LVDS Channel 2, Signal 1-	
31	CH2_Y1+	LVDS Channel 2, Signal 1+	
32	CH2_Y2-	LVDS Channel 2, Signal 2-	
33	CH2_Y2+	LVDS Channel 2, Signal 2+	

34	GND	Ground	
35	CH2_CLK-	LVDS Channel 2, Clock -	
36	CH2_CLK+	LVDS Channel 2, Clock +	
37	GND	Ground	
38	CH2_Y3-	LVDS Channel 2, Signal 3-	
39	CH2_Y3+	LVDS Channel 2, Signal 3+	
40	N.C.	No connection	2
41	N.C.	No connection	, 2
42	N.C.	No connection	2
43	N.C.	No connection	2
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No connection	2
48	V_{DD}	Power Supply, +12V DC Regulated	
49	V_{DD}	Power Supply, +12V DC Regulated	
50	V _{DD}	Power Supply, +12V DC Regulated	
51	V _{DD}	Power Supply, +12V DC Regulated	

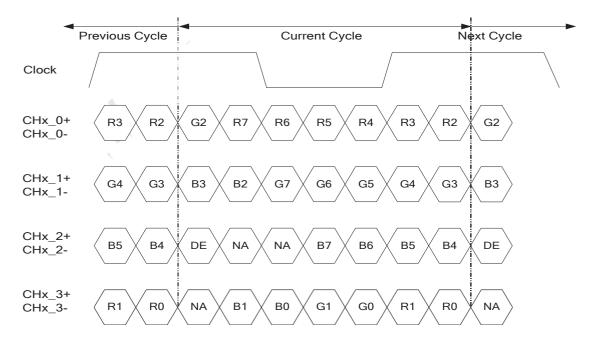

Note1. Pin number start from the left side as the

Note2. Please leave this pin unoccupied. It cannot be connected with any signal (Low/GND/High). Note3. LVDS data format selection

LVDS_SEL	Mode
H or OPEN	NS
L	Jeida


Input equivalent impedance of LVDE_SEL pin

4.3 Input Data Format 4.3.1 LVDS color data mapping


LVDS Option for 8bit

■ LVDS Option NS

Note: x = 1, 2, 3, 4...

■ LVDS Option JEIDA

Note: x = 1, 2, 3, 4...

4.3.2 Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 8 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

COLOR DATA REFERENCE

8bit

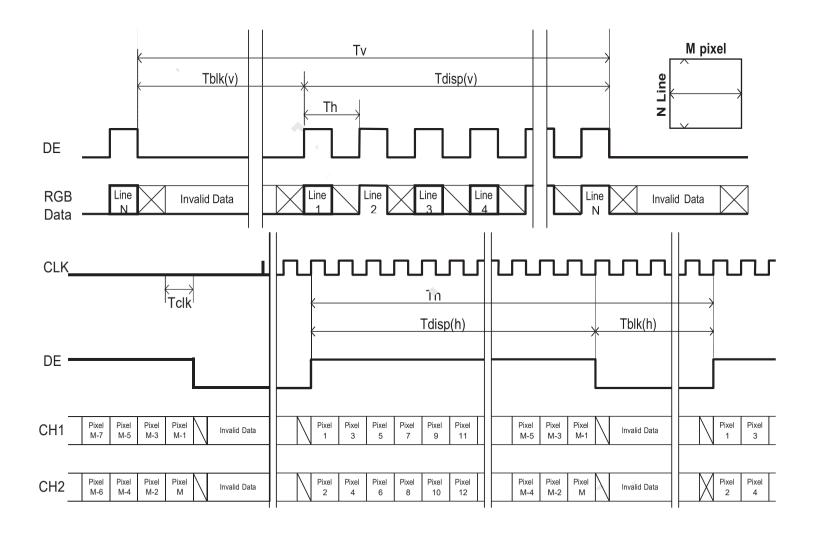
											ı	npu	ıt Co	olor	Data	a									
		RED				GREEN				BLUE															
	Color	MS	В					LS	SB	MS	В					LS	SB	MS	В					LS	SB
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	В4	ВЗ	B2	В1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R																									
	RED(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
G																									
	GREEN(254)		0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
В																									
	BLUE(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

5. Signal Timing Specification

This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

5.1 Input Timing

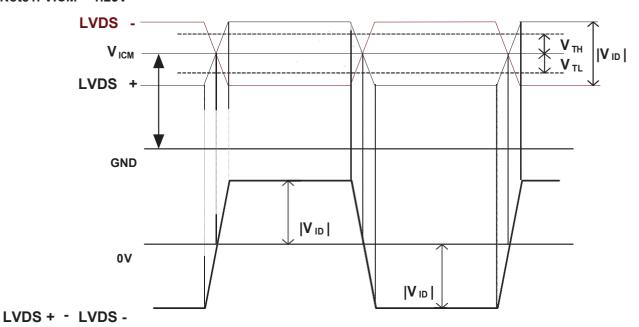
5.1.1. Timing table

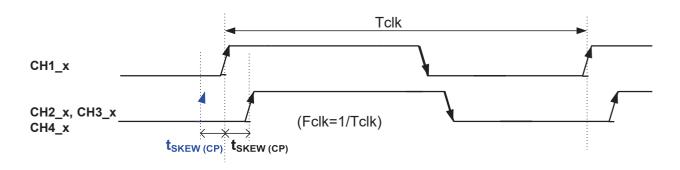

Timing Table (DE only Mode)

Signal	Item	Symbol	MIN	TYP	MAX	Unit			
	Period	Tv	1120	1125	1480	Th			
Vertical Section	Active	Tdisp(v)		1080					
	Blanking	Tblk(v)	40	45	400	Th			
	Period	Th	1030	1100	1325	Tclk			
Horizontal Section	Active	Tdisp(h)		960					
	Blanking	Tblk(h)	70	140	365	Tclk			
Vertical Frequency	Frequency	Freq	47	60	63	Hz			
Horizontal Frequency	Frequency	Freq	60	67.5	73	KHz			
Clock	Frequency	FCLK	53	74.25	82	MHz			

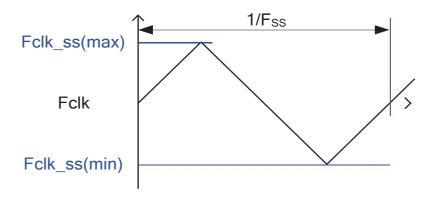
Notes:

- (1) Display position is specific by the rise of DE signal only.
 - Horizontal display position is specified by the rising edge of 1st DCLK after the rise of 1st DE, is displayed on the left edge of the screen.
- (2) Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1st data corresponding to one horizontal line after the rise of 1st DE is displayed at the top line of screen.
- (3) If a period of DE "High" is less than 3840 DCLK or less than 2160 lines, the rest of the screen displays black.
- (4) The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other.

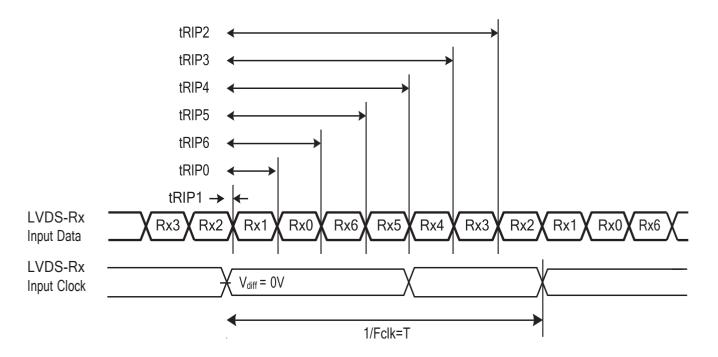

5.1.2. Signal Timing Waveform


5.2 Input interface characteristics

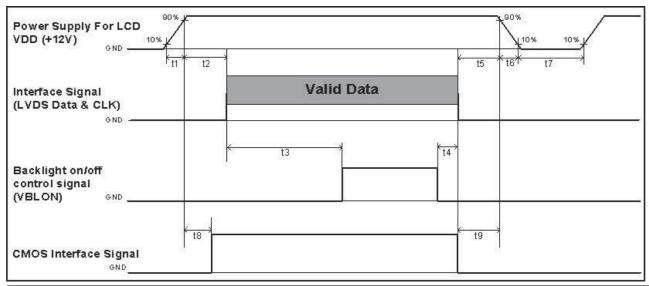
	Downstan	Cumhal		Value		l lmit	Note
	Parameter	Symbol	Min.	Тур.	Max	Unit	Note
	Input Differential Voltage	NVIDN	200	400	600	mV_{DC}	1
	Differential Input High Threshold Voltage	V _{TH}	+100		+300	mV _{DC}	1
	Differential Input Low Threshold Voltage	V _{TL}	-300		-100	mV _{DC}	1
	Input Common Mode Voltage	V _{ICM}	1.1	1.25	1.4	V_{DC}	1
	Input Channel Pair Skew Margin	tskew (CP)	-500		+500	ps	2
LVDS Interface	Input Channel Pair Skew Margin (only for M'Star MST7428BB)	tskew (CP)	-400		+400	ps	2
	Receiver Clock : Spread Spectrum	Fclk_ss	Fclk		Folk	MHz	3
	Modulation range	FCIK_SS	-3%		+3%	IVII IZ	3
	Receiver Clock : Spread Spectrum	Fss	30		200	KHz	3
	Modulation frequency	1 33	50		200	IXIIZ	3
	Receiver Data Input Margin						
	Fclk = 85 MHz	tRMG	-0.4		0.4	ns	4
	Fclk = 65 MHz		-0.5		0.5		


Note1. VICM = 1.25V

Note2. Input Channel Pair Skew Margin



Note3. LVDS Receiver Clock SSCG (Spread spectrum clock generator) is defined as below figures.



Note4. Receiver Data Input Margin

Doromotor	Cymahal		Rating						
Parameter	Symbol	Min	Туре	^ Max	Unit	Note			
Input Clock Frequency	Fclk	Fclk (min)		Fclk (max)	MHz	T=1/Fclk			
Input Data Position0	tRIP1	- tRMG	0	[tRMG]	ns				
Input Data Position1	tRIP0	T/7- tRMG	T/7	T/7+ tRMG	ns				
Input Data Position2	tRIP6	2T/7- tRMG	2T/7	2T/7+ tRMG	ns				
Input Data Position3	tRIP5	3T/7- tRMG	3T/7	3T/7+ tRMG	ns				
Input Data Position4	tRIP4	4T/7- tRMG	4T/7	4T/7+ tRMG	ns				
Input Data Position5	tRIP3	5T/7- tRMG	5T/7	5T/7+ tRMG	ns				
Input Data Position6	tRIP2	6T/7- tRMG	6T/7	6T/7+ tRMG	ns				

5.3 Power Sequence for LCD

Parameter		I I no i 4		
	Min.	Type.	Max.	Unit
t1	0.4		30	ms
t2	40			ms
t3	640			ms
t4	0*1			ms
t5	0			ms
t6		*2		ms
t7	1000			ms
t8	20*3		50	ms
t9	0			ms

Note:

- (1) t4=0 : concern for residual pattern before BLU turn off.
- (2) t6: voltage of VDD must decay smoothly after power-off. (customer system decide this value)
- (3) When user control signal is N.C. (no connection), opened in Transmitted end, t8 timing spec can be negligible.

6. Backlight Specification

6.1 Electrical specification

Back Light Unit

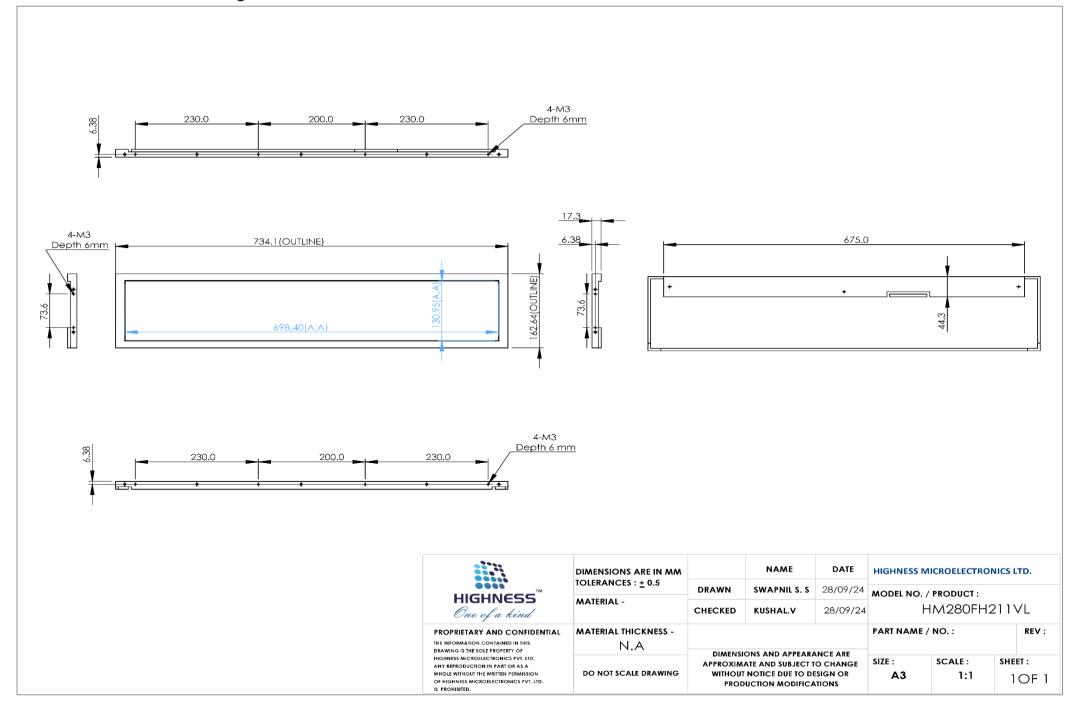
The table shows specifications of a single light bar, the BLU have 2 lightbars. Total Power Consumption is 25W typ.

Inverter Input Condition & Specification

Items	Symbol	Conditions	Specifications			l læi4	Note
			Min.	Тур.	Max.	Unit	Note
Forward current (LED)	l(f)		-	90	-	mA	
Forward voltage (LED)	V(f)		2.9	-	3.3	V	
Current(light bar)	I(L)		-	360	450	mA	
Voltage (light bar)	V(L)		30	-	36.3	V	
Power Consumption	ON			25	33	W	

- 1. The pin configuration for the connector is shown in the table below
- 2. The mating connector is PH1.25-3pin.A12511R

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Lifetime	Hr	70,000	-	-	Hour	(1)


Note (1) It is defined as the time to take until the brightness reduces to 50% of its original value. [Operating condition: Ta = $25\pm2^{\circ}$ C, I_L = TBD, For single lamp only.]

7. Mechanical Characteristics

The contents provide general mechanical characteristics for the model In addition the figures in the next pageare detailed mechanical drawing of the LCD.

Item		Dimension	Unit	Note
	Horizontal	734.1	mm	,
	Vertical	162.64	mm	
Outline Dimension	Depth	17.3	mm	
	Bezel opening	700.4(H) x 133(V)	mm	
	Display Area	698.4(H) x 130.95(V)	mm	
Weight	2.5 (TBD)		Kg	

8. Mechanical Drawing

