

Release Date 06th Oct 2020

THIS DOCUMENT CONTAINS PROPRIETORY INFORMATION WHICH IS SOLELY OWENED BY 'HIGHNESS MICROELECTRONICS LTD." ANY UNAUTHORISED COPY OR PRINTING OR PUBLISHING OF INFORMATION IN THIS DOCUMENT IN PART OR IN COMPLETE IS RESTRICTED.

1. General Description

This specification applies to the 17 inch Color TFT-LCD Module HM170SX201A.

The display supports the SXGA (1280(H) x 1024(V)) screen format and 16.2M colors (RGB 6-bits+Hi-FRC data). All input signals are 2 Channel LVDS interface compatible.

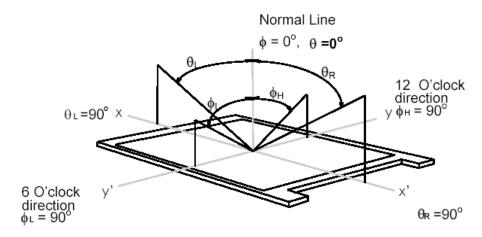
This module embbededs an LED driver on it.

1.1 Display Characteristics

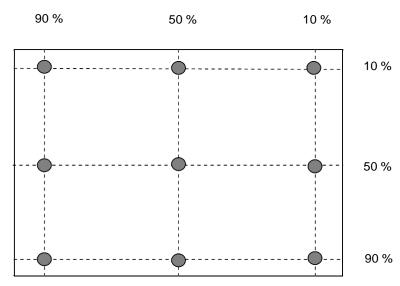
The following items are characteristics summary on the table under 25 $\,^\circ\!\!\mathbb{C}\,$ condition:

Items	Unit	Specifications
Screen Diagonal	[mm]	432 (17.0")
Active Area	[mm]	337.920(H) × 270.336(V)
Pixels H x V		1280 × 3(RGB) × 1024
Pixel Pitch	[mm]	0.264(per one triad) × 0.264
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		Normally White
White Luminance	[cd/m ²]	350 (typ.)
Contrast Ratio		1000 : 1 (Typ)
Optical ResponseTime	[msec]	5 (Typ)
Nominal Input Voltage VDD	[Volt]	+5.0 (Typ)
Power Consumption (VDD line + LED line)	[Watt]	13 W
Weight	[Grams]	1300g(Typ)
Physical Size (H x V x D)	[mm]	358.5(H) x 296.5(V) Typ. x 18.0(D) Max
Electrical Interface		Dual Channel LVDS
Surface Treatment		Anti-glare type, Hardness 3H
Support Color		16.2M colors (RGB 6-bits +Hi-FRC data)
Temperature Range Operating Storage (Non-Operating)	[°C]	0 to +50 -20 to +60
RoHS Compliance		RoHS Compliance

1.2 Optical Characteristics


The optical characteristics are measured under stable conditions at 25 $^{\circ}\mathrm{C}$ (Room Temperature):

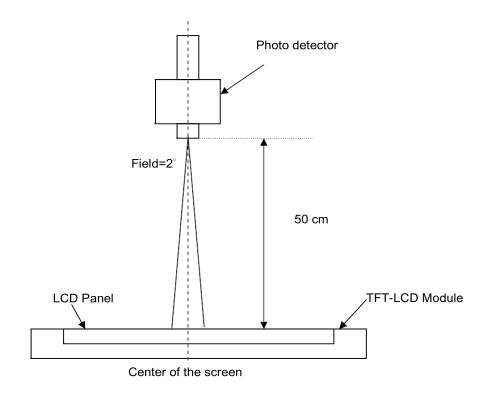
Item	Unit	Cond	itions	Min.	Тур.	Max.	Note
Viewing Angle	[degree]	Horizontal CR = 10	(Right) (Left)	140	170	-	1
	. 0 .	Vertical CR = 10	(Up) (Down)	140	160	-	
Luminance Uniformity	[%]	9 Points		75	80	ı	2, 3
		Rising		-	3.5	6	
Optical Response Time	[msec]	Falling		-	1.5	3	4, 6
		Rising + Fall	ing	-	5	9	
		Red x		0.609	0.639	0.669	
		Red y		0.302	0.332	0.362	
		Green x		0.290	0.320	0.350	
Color / Chromaticity Coordinates		Green y	Green y		0.629	0.659	4
(CIE 1931)		Blue x		0.125	0.155	0.185	4
		Blue y	Blue y 0.026 0.056 0.0		0.086		
		White x		0.273	0.313	0.343	
		White y		0.289	0.329	0.359	
White Luminance (At LED= 60mA)	[cd/m ²]			280	350	-	4
Contrast Ratio				600	1000	-	4
Cross Talk (At 75Hz)	[%]			_	-	1.5	5
Flicker	[dB]			-	-	-20	7
Color Gamut	[%]				72		


Optical Equipment: BM-5A, BM-7, PR880, or equivalent

Note 1: Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

Note 2: 9 points position

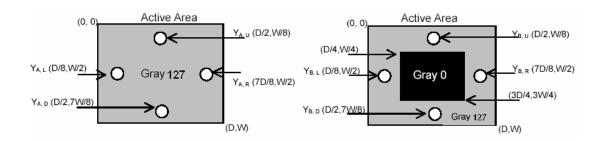


Note 3: The luminance uniformity of 9 points is defined by dividing the maximum luminance values by the minimum test point luminance

$$\delta_{\text{W9}} = \frac{\text{Minimum Luminance of 9 points}}{\text{Maximum Luminance of 9 points}}$$

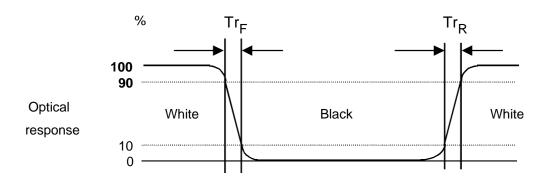
Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

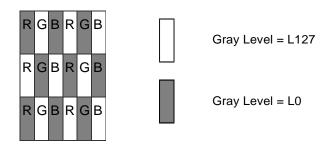

Note 5: Definition of Cross Talk (CT)

 $CT = | YB - YA | / YA \times 100 (\%)$

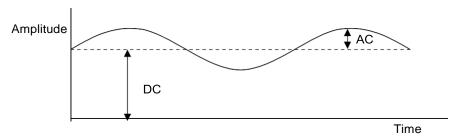
Where


YA = Luminance of measured location without gray level 0 pattern (cd/m2)

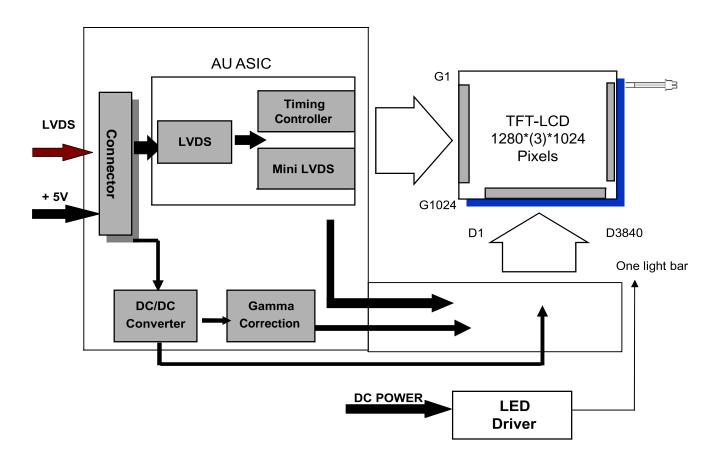
YB = Luminance of measured location with gray level 0 pattern (cd/m2)



Note 6: Definition of response time:


The output signals of photo detector are measured when the input signals are changed from "Full Black" to "Full White" (rising time), and from "Full White" to "Full Black" (falling time), respectively. The response time is interval between the 10% and 90% of amplitudes. Please refer to the figure as below.

Note 7: Subchecker Pattern


Method: Record dBV & DC value with (WESTAR)TRD-100

Flicker (dB) =
$$20 \log \frac{AC \text{ Level(at 30 Hz)}}{DC \text{ Level}}$$

2. Functional Block Diagram

The following diagram shows the functional block of the 17.0 inches Color TFT-LCD Module:

PCBA Connector:

JAE FI-XB30SSL-HF15 Or Compatible

LED Driver Connector:

Entery 3806K-F06Y-03R Or Compatible

3. Absolute Maximum Ratings

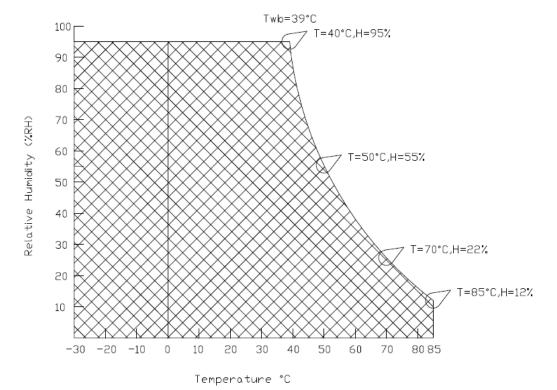
Absolute maximum ratings of the module is as following:

3.1 TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	VIN	-0.3	6	[Volt]	Note 1,2

3.2 Backlight Unit

Item	Symbol	Min	Max	Unit	Conditions
LED Forward Current	I _F	-		[mA]	Note 1,2


3.3 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	
Operation Humidity	HOP	5	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 3
Storage Humidity	HST	5	90	[%RH]	

Note 1: With in Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

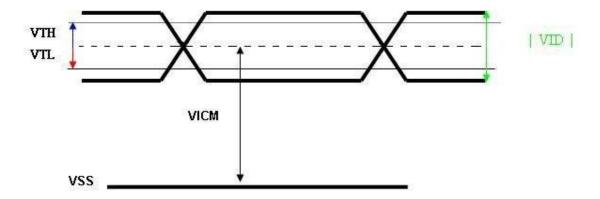
Note 3: For quality performance, please refer to HIGHNESS IIS (Incoming Inspection Standard).

4. Electrical characteristics

4.1 TFT LCD Module

4.1.1 Power Specification

Input power specifications are as follows:


Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
VCC	Logic/LCD Drive Voltage	4.5	5.0	5.5	[Volt]	±10%
ICC	Input Current	-	0.59	0.71	[A]	Vin=5V , All Black Pattern, at 75Hz
PCC	VCCPower	-	2.95	3.54	[Watt]	Vin=5V , All Black Pattern, at 75Hz
VCCrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	500	[mV] p-p	With panel loading

4.1.2 Signal Electrical CharacteristicsInput signals shall be low or Hi-Z state when Vin is off
It is recommended to refer the specifications of SN75LVDS82DGG (Texas Instruments) in detail.

Each signal characteristics are as follows;

Symbol	Parameter	Min	Тур	Max	Units	Condition
VTH	Differential Input High	_	_	+100	[mV]	VICM = 1.2V
VIII	Threshold		_	+100	[1117]	Note
\/_	Differential Input Low	400			[\/]	VICM = 1.2V
VTL	Threshold	-100	-		[mV]	Note
VID	Input Differential Voltage	100	400	600	[mV]	Note
VICM	Differential Input Common	.10	.1.2	.1 5	r\ /1	VTH/VTL = ±100MV
VICM	Mode Voltage	+1.0 +1.2 +1.5		[V]	Note	

Note: LVDS Signal Waveform

4.2 Backlight Unit

Parameter guideline LED

Following characteristics are measured under stable condition at 25°C (Room Temperature)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Remark
V_{LED}	Input Voltage	10.8	12	12.6	Volt	
I _{LED}	Input Current	-	0.8	-	Α	100% Dimming
P _{LED}	Power Consumption	-	9.6	-	Watt	100% Dimming
I _{INRUSH} LED	Inrush Current	-	-	5.1	Α	V _{LED} rising time ~ 470us
F _{PWM}	PWM Dimming Frequency	200	-	20K	Hz	
V	Swing Voltage High	3.0	3.3	5.5	Volt	Note 1,2
V _{PWM DIM}	Swing Voltage Low	-	-	0.8	Volt	Note 1,2
D _{PWM}	Dimming Duty Cycle	10	-	100	%	
I _F	LED Forward Current	-	60	-	mA	Ta = 25°℃
V	On Control Voltage	3.0	3.3	5.5	Volt	Note 2 4
V _{LED} ON/OFF	Off Control Voltage	-	-	0.8	Volt	Note 3, 4
Operating Life		30000	-	,	Hrs	Note 5, 6

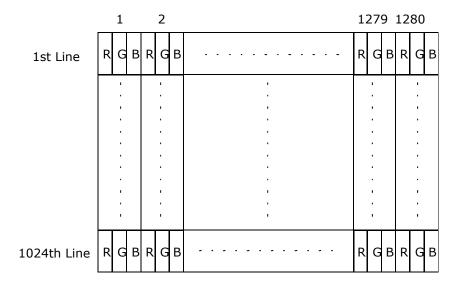
Note 1: PWM dimming function can be operated by PWM signal. PWM duty cycle can adjust white Luminance.

(PWM High: ON and PWM Low: OFF)

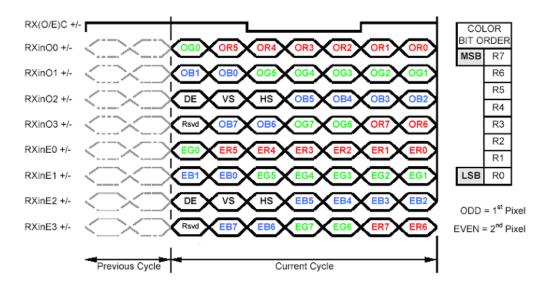
Note 2: PWM signal can not be floating and pull-down to ground when waiting.

Note 3: Enable ($V_{\text{LED On/Off}}$) must be turned on late than V_{LED} and PWM Signal.

Note 4: Enable ($V_{\text{LED On/Off}}$) must be turned off early than V_{LED} and PWM Signal.


Note 5: If HM170SX201A module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.

Note 6: Operating life means brightness goes down to 50% initial brightness. Minimum operating life time is estimated data.


5. Signal Characteristic

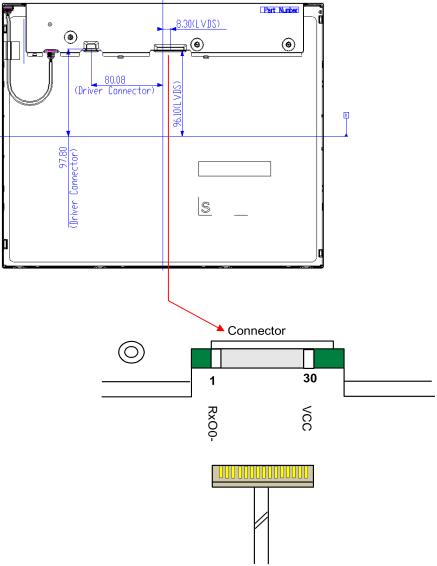
5.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

5.2 The Input Data Format

Note1: Normally, DE, VS, HS on EVEN channel are not used.

Note2: Please follow PSWG.


Note3: 8-bit in

5.3 Signal Description

The module using a pair of LVDS receiver SN75LVDS82(Texas Instruments) or compatible. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS83(negative edge sampling) or compatible. The first LVDS port(RxOxxx) transmits odd pixels while the second LVDS port(RxExxx) transmits even pixels.

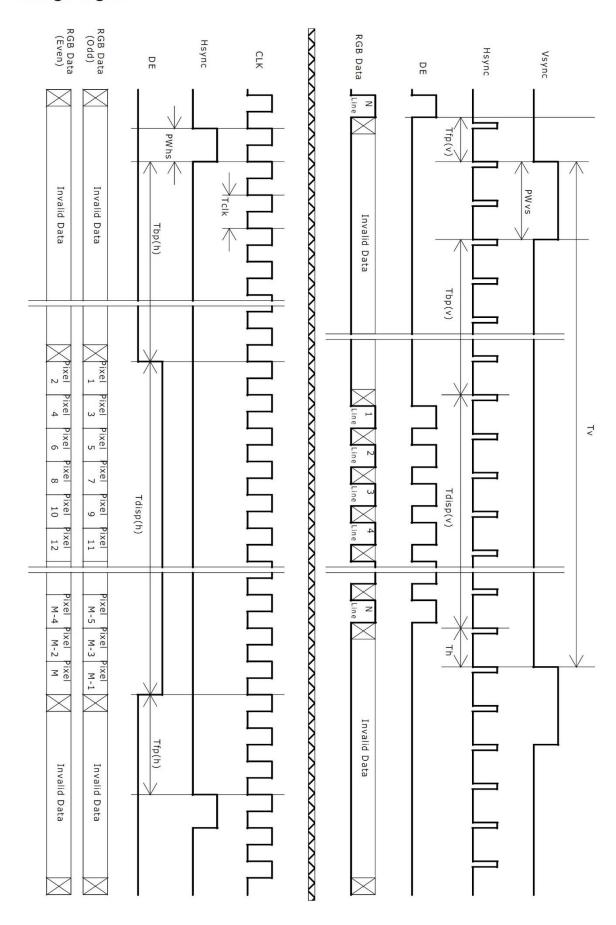
PIN#	SIGNAL NAME	DESCRIPTION		
1	RxO0-	Negative LVDS differential data input (Odd data)		
2	RxO0+	Positive LVDS differential data input (Odd data)		
3	RxO1-	Negative LVDS differential data input (Odd data)		
4	RxO1+	Positive LVDS differential data input (Odd data)		
5	RxO2-	Negative LVDS differential data input (Odd data, H-Sync,V-Sync,DSPTMG)		
6	RxO2+	Positive LVDS differential data input (Odd data, H-Sync,V-Sync,DSPTMG)		
7	GND	Power Ground		
8	RxOC-	Negative LVDS differential clock input (Odd clock)		
9	RxOC+	Positive LVDS differential clock input (Odd clock)		
10	RxO3-	Negative LVDS differential data input (Odd data)		
11	RxO3+	Positive LVDS differential data input (Odd data)		
12	RxE0-	Negative LVDS differential data input (Even data)		
13	RxE0+	Positive LVDS differential data input (Even data)		
14	GND	Power Ground		
15	RxE1-	Negative LVDS differential data input (Even data)		
16	RxE1+	Positive LVDS differential data input (Even data)		
17	GND	Power Ground		
18	RxE2-	Negative LVDS differential data input (Even data)		
19	RxE2+	Positive LVDS differential data input (Even data)		
20	RxEC-	Negative LVDS differential clock input (Even clock)		
21	RxEC+	Positive LVDS differential clock input (Even clock)		
22	RxE3-	Negative LVDS differential data input (Even data)		
23	RxE3+	Positive LVDS differential data input (Even data)		
24	GND	Power Ground		
25	GND	Power Ground (For HIGHNESS test Aging+HVS mode)		
26	NC	No contact		
27	GND	Power Ground		
28	VCC	+5.0V Power Supply		
29	VCC	+5.0V Power Supply		
30	vcc	+5.0V Power Supply		

Note1: Start from left side

Note2: Input signals of odd and even clock shall be the same timing.

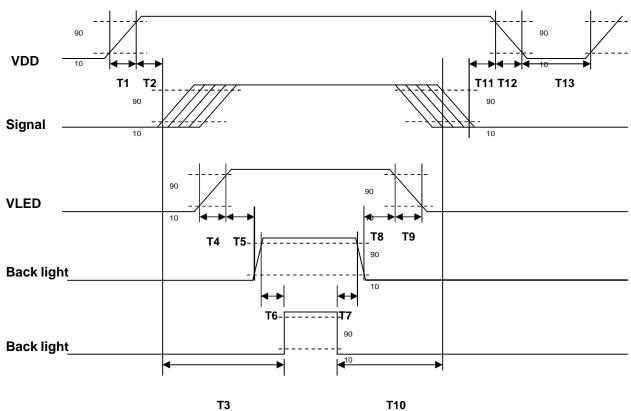
Note3: Please follow PSWG.

5.4 Timing Characteristics


5.4.1 Timing Characteristics

Basically, interface timings described here is not actual input timing of LCD module but output timing of SN75LVDS82DGG (Texas Instruments) or equivalent.

Signal	Item	Symbol	Min	Тур	Max	Unit
	Period	Tv	1032	1066	1150	Th
Vertical	Active	Tdisp(v)	1024	1024	1024	Th
Section	Blanking	Tbp(v)+Tfp(v)+PWvs	8	42	126	Th
	Period	Th	780	844	2048	Tclk
Horizontal	Active	Tdisp(h)	640	640	640	Tclk
Section	Blanking	Tbp(h)+Tfp(h)+PWhs	140	204	1408	Tclk
	Period	Tclk	14.81	18.52	25	ns
Clock	Clock Frequency F		40	54	67.5	MHz
Frame rate	Frame rate	F	50	60	75	Hz


Note : DE mode only

5.4.2 Timing Diagram

5.5 Power ON/OFF Sequence

VDD power and lamp on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

T10
Power Sequence Timing

Doromotor		Value	I lmi4	
Parameter	Min.	Тур.	Max.	Unit
T1	0.5	-	10	[ms]
T2	30	40	50	[ms]
Т3	200	-	-	[ms]
T4	0.5	-	10	[ms]
T5	10	-	-	[ms]
T6	10	-	-	[ms]
T7	0	-	-	[ms]
Т8	10	-	-	[ms]
Т9	-	-	10	[ms]
T10	110	-	-	[ms]
T11	0	16	50	[ms]
T12	-	-	10	[ms]
T13	1000	-	-	[ms]

6. Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

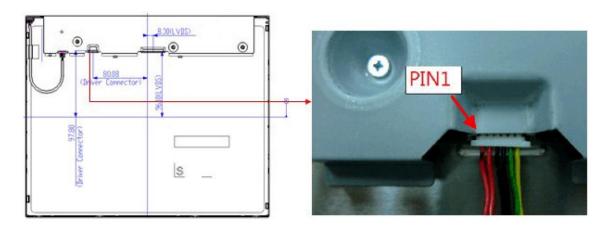
6.1 TFT LCD Module

6.1.1 Connector

Connector Name / Designation	Interface Connector
Manufacturer	JAE or Compatible
Type Part Number	FI-XB30SSL-HF15 or Compatible
Mating Housing Part Number	JAE FI-X30HL or Compatible

6.1.2 Pin Assignment

Pin#	Signal Name	Pin#	Signal Name
1	RxOIN0-	2	RxOIN0+
3	RxOIN1-	4	RxOIN1+
5	RxOIN2-	6	RxOIN2+
7	GND	8	RxOCLKIN-
9	RxOCLKIN+	10	RxOIN3-
11	RxOIN3+	12	RxEIN0-
13	RxEIN0+	14	GND
15	RxEIN1-	16	RxEIN1+
17	GND	18	RxEIN2-
19	RxEIN2+	20	RxECLKIN-
21	RxECLKIN+	22	RxEIN3-
23	RxEIN3+	24	GND
25	GND (AGMODE+HVS)	26	NC
27	GND	28	VCC
29	VCC	30	VCC


6.2 Backlight Unit

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

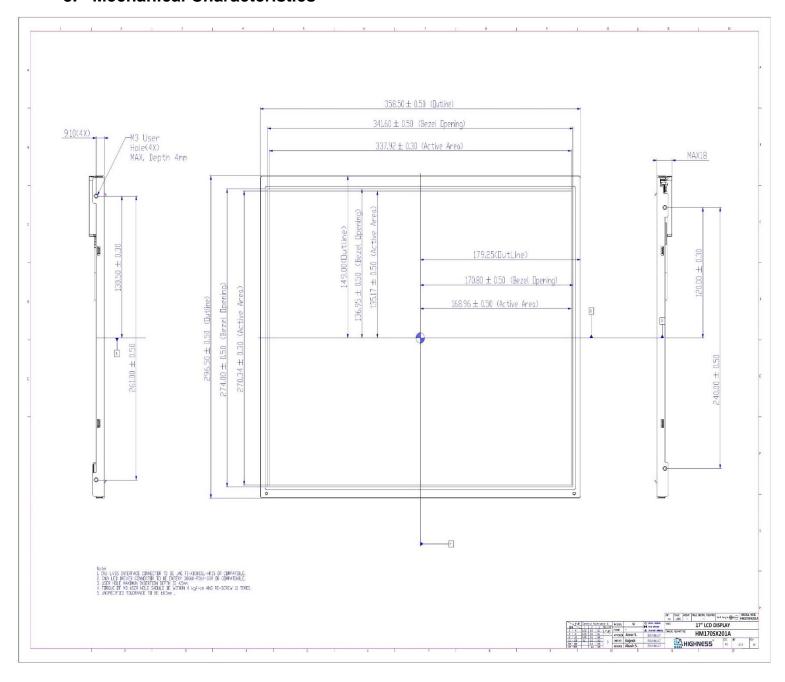
Connector Name / Designation	Lamp Connector	
Manufacturer	E&T or compatible	
Connector Model Number	3806K-F06Y-03R or compatible	
Mating Connector Model Number	H208K-P06N-02B or compatible	

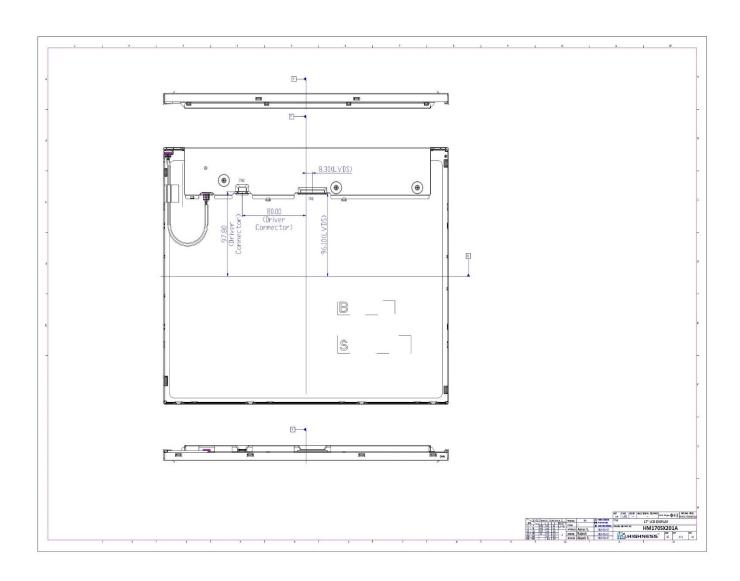
6.2.1 Signal for LED driver connector

Pin#	Symbol	Signal Name	
1	VCC	12V	
2	VCC	12V	
3	GND	GND	
4	GND	GND	
5	Display on	5V-On / 0V-Off	
6	Dimming	PWM Dimming	

7. Reliability Test

Environment test conditions are listed as following table.


Items	Required Condition	Note	
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 300 hrs		
High Temperature Operation (HTO)	Ta= 50°C , 300 hrs		
Low Temperature Operation (LTO)	Ta= 0°C, 300 hrs		
High Temperature Storage (HTS)	Ta= 60°C , 300 hrs		
Low Temperature Storage (LTS)	Ta= -20°C, 300 hrs		
Vibration Test (Non-operation)	Acceleration: 1.5 G Wave: Random Frequency: 10 - 200 - 10 Hz Sweep: 30 Minutes each Axis (X, Y, Z)		
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)		
Drop Test	Height: 60 cm, package test		
Thermal Shock Test (TST)	-20°C/30min, 60°C/30min, 100 cycles		
On/Off Test	On/10sec, Off/10sec, 30,000 cycles		
ESD	Contact Discharge: \pm 8KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point.	1	
E3D	Air Discharge: ± 15KV, 150pF(330Ω) 1sec 8 points, 25 times/ point.		
EMI	30-230 MHz, limit 40 dBu V/m, 230-1000 MHz, limit 47 dBu V/m		
Altitude Test	Operation:10,000 ft Non-Operation:30,000 ft		


Note1: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost Self-recoverable. No hardware failures.

Note2:

- Water condensation is not allowed for each test items.
- Each test is done by new TFT-LCD module. Don't use the same TFT-LCD module repeatedly for reliability test.
- The reliability test is performed only to examine the TFT-LCD module capability.
- To inspect TFT-LCD module after reliability test, please store it at room temperature and room humidity for 24 hours at least in advance.
- No function failure occurs.

8. Mechanical Characteristics

