

FUNCTIONAL DRAFT SPECIFICATION

(This document is meant for customers' approval)

Release Date 02nd Mar 2021

THIS DOCUMENT CONTAINS PROPRIETORY INFORMATION WHICH IS SOLELY OWENED BY 'HIGHNESS MICROELECTRONICS PVT. LTD." ANY UNAUTHORISED COPY OR PRINTING OR PUBLISHING OF INFORMATION IN THIS DOCUMENT IN PART OR IN COMPLETE IS RESTRICTED.

HIGHNESS MICROELECTRONICS PVT. LTD URL: www.highnessmicro.com, Email: sales@highnessmicro.com

1. General Description

This specification applies to the Color Active-Matrix Liquid Crystal Display HM121XG211A composed of a TFT-LCD display, a driver and power supply circuit, and a LED backlight system.

The screen format is intended to support XGA (1024(H) x 768(V)) screen and 16.2M (RGB 8-bits) or 262k colors (RGB 6-bits).

LED driving board for backlight unit is included in HM121XG211A and the LED unit is

replaceable.

HM121XG211A designed with wide viewing angle; wide temperature and long life LED backlight iswell suited for industrial applications.

HM121XG211A is a RoHS product.

1.1 Display Characteristics

The following items are characteristics summary on the table under 25°C condition:

Items	Unit	Specifications
Screen Diagonal	[inch]	12.1
Active Area	[mm]	245.76 (H) x 184.32 (V)
Pixels H x V		1024 x 768
Pixel Pitch	[mm]	0.24 x 0.24
Pixel Arrangement		R.G.B.W Rectangle
Display Mode		TN, Normally White
Nominal Input Voltage VDD	[Volt]	3.3 (typ.)
Typical Power Consumption	[Watt]	9.15(typ.) All black pattern
Weight	[Grams]	495 (Max.)
Physical Size	[mm]	279.0(H) x 209.0(V) x 9.0(D) (Max.)
Electrical Interface		1 channel LVDS
Surface Treatment		Anti-glare, Hardness 3H
Support Color		16.2M / 262K colors
Temperature Range Operating Storage (Non-Operating)	دٌ [C]	-30 to +85 -30 to +85
RoHS Compliance		RoHS Compliance

1.2 Optical Characteristics

Item	Unit	Cond	itions	Min.	Тур.	Max.	Remark
White Luminance	[cd/m2]	I _F = 110mA/1 (center point	l LED Line t)	375	500	-	Note 1
Uniformity	%	5 Points		75	-	-	Note 2, 3
Contrast Ratio				500	700	-	Note 4
	[msec]	Rising		-	25	35	
Response Time	[msec]	Falling		-	10	20	Note 5
	[msec]	Raising + Fa	Illing	-	35	55	
	[degree]	Horizontal	(Right)	70	80	-	
	[degree]	CR = 10	CR = 10 (Left)	70	80	-	
	[degree]	Idegreel Vertical	(Upper)	70	80	-	Note 6
	[degree]	CR = 10	(Lower)	70	80	-	
		Red x		0.592	0.642	0.692	
		Red y		0.292	0.342	0.392	
		Green x		0.276	0.326	0.376	
Color / Chromaticity		Green y		0.565	0.615	0.665	
(CIE 1931)		Blue x		0.098	0.148	0.198	
		Blue y		0.006	0.056	0.106	
		White x		0.260	0.310	0.360	
		White y		0.280	0.330	0.380	
Color Gamut	%			-	70	-	

The optical characteristics are measured under stable conditions.

Note 1: Measurement method

Equipment Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter

Aperture

Test Point Center

Environment < 1 lux

Module Driving Equipment

Note 2: Definition of 5 points position (Display active area: 245.76mm (H) x 184.32mm (V))

Note 3: The luminance uniformity of 5 points is defined by dividing the minimum luminance values by the maximum test point luminance

 $\delta_{W9} = \frac{\text{Minimum Brightness of five points}}{\text{Maximum Brightness of five points}}$

Note 4: Definition of contrast ratio (CR):

Contrast ratio (CR)= Brightness on the "White" state Brightness on the "Black" state

Note 5: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "White" to "Black" (falling time) and from "Black" to "White" (rising time), respectively. The response time interval is between 10% and 90% of amplitudes. Please refer to the figure as below.

Note 6: Definition of viewing angle

I and

180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as below: 90° (θ) horizontal left and right, and 90° (Φ) vertical high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated to its center to develop the desired measurement viewing angle.

2. Functional Block Diagram

The following diagram shows the functional block of the 12.1-inch color TFT/LCD module:

3. Absolute Maximum Ratings

3.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit
Logic/LCD Drive Voltage	Vin	-0.3	+3.6	[Volt]

3.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit
Operating Temperature	ТОР	-30	+85	[°C]
Operation Humidity	HOP	5	90	[%RH]
Storage Temperature	TST	-30	+85	[[°] C]
Storage Humidity	HST	5	90	[%RH]

Note: Maximum Wet-

and no condensation.

Temperature *C

4. Electrical Characteristics

4.1 TFT LCD Module

4.1.1 Power Specification

Symbol	Parameter	Min	Тур	Max	Units	Remark
VDD	Logic/LCD Input Voltage	3.0	3.3	3.6	[Volt]	
I _{VDD}	LCD Input Current	-	590	710	[mA]	VDD=3.3V at 60 HZ, all Black Pattern
P _{VDD}	LCD Power comsumption	-	1.95	2.34	[Watt]	VDD=3.3V at 60 HZ, all Black Pattern
I _{rush LCD}	LCD Inrush Current	-	-	3	[A]	Note 1; VDD=3.3V Black Pattern, Rising time=470us
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	_	100	[mV] p-p	VDD=3.3V at 60 HZ, all Black Pattern

VDD rising time

4.1.2 Signal Electrical Characteristics

Input signals shall be low or Hi-Z state when VDD is off.

Symbol	Item	Min.	Тур.	Max.	Unit	Remark
VTH	Differential Input High Threshold	-	-	100	[mV]	VCM=1.2V
VTL	Differential Input Low Threshold	100	-	-	[mV]	VCM=1.2V
VID	Input Differential Voltage	100	400	600	[mV]	
VICM	Differential Input Common Mode Voltage	1.15	1.2	1.45	[V]	VTH/VTL=+-100mV

Note: LVDS Signal Waveform.

4.2 Backlight Unit

4.2.1 Parameter guideline for LCD

Following characteristics are measured under a stable condition using a

. (Room Temperature):

Symbol	Parameter	Min.	Тур.	Max.	Unit	Remark
VCC	Input Voltage	10.8	12	12.6	[Volt]	
Ivcc	Input Current	-	0.6	-	[A]	100% PWM Duty Ta= 25 [°] C
P _{VCC}	Power Consumption	-	7.2	10	[Watt]	100% PWM Duty Ta= 25 [°] C
I _{rush LED}	Inrush Current	-	-	1.5	[A]	at rising time=470us Ta= 25 C
F _{PWM}	Dimming Frequency	200	-	20K	[Hz]	
	Swing Voltage	3	3.3	5.5	[Volt]	
	Dimming duty cycle	5	-	100	%	
lF	LED Forward Current	-	110	-	[mA]	Ta = 25°C
		-	(30.33)		[Volt]	l⊧ = 110mA, Ta = -30 [°] C
VF	LED Forward Voltage	-	(27.81)	36	[Volt]	$I_{\rm F} = 110 {\rm mA}$, Ta = $25^{\circ} {\rm C}$
		-	(26.1)		[Volt]	l _F = 110mA, Ta = 85 [°] C
PLED	LED Power Consumption	-	(3.06)	3.96	[Watt]	l _F = 110mA, Ta = 25 [°] C
Operation Life		50,000	-	-	Hrs	l⊧=110mA, Ta= 25 [°] C

Note 1: Ta means ambient temperature of TFT-LCD module.

Note 2: VCC, Ivcc, Irush LED, Pvcc are defined for LED backlight.(100% duty of PWM dimming)

Note 3: I_F, V_F are defined for one channel LED. There are two LED channel in back light unit.

Note 4: If HM121XG211A module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.

Note 5: Operating life means brightness goes down to 50% initial brightness. Minimum operating life time is estimated data.

5. Signal Characteristics

5.1 Pixel Format Image

Following figure shows the relationship between input signal and LCD pixel format.

5.2 Scanning Direction

The following figures show the image seen from the front view. The arrow indicates the direction of scan.

Fig. 1 Normal scan (Pin19, RSV = Low or NC)

Fig. 2 Reverse scan (Pin19, RSV = High or VDD)

5.3 TFT-LCD Interface Signal Description

The module using a LVDS receiver embedded in HIGHNESS'S ASIC. LVDS is a differential signal technology for LCDinterface and a high-speed data transfer device.

Input Sig	nal Interface	9
Pin No.	Symbol	Description
1	VDD	Power Supply, 3.3V (typical)
2	VDD	Power Supply, 3.3V (typical)
3	GND	Ground
4	SEL68	6/ 8bits LVDS data input selection [H: 8bits L/NC: 6bit] *Note4
5	RIN0-	LVDS receiver signal channel 0
6	RIN0+	LVDS Differential Data Input (R0, R1, R2, R3, R4, R5, G0)
7	GND	Ground
8	RIN1-	LVDS receiver signal channel 1
9	RIN1+	LVDS Differential Data Input (G1, G2, G3, G4, G5, B0, B1)
10	GND	Ground
11	RIN2-	LVDS receiver signal channel 2
12	RIN2+	LVDS Differential Data Input (B2, B3, B4, B5, HS, VS, DE)
13	GND	Ground
14	CLKIN-	LVDS receiver signal clock
15	CLKIN+	
16	GND	Ground
17	RIN3-	LVDS receiver signal channel 3, NC for 6 bit LVDS Input. *Note5
18	RIN3+	LVDS Differential Data Input (R6, R7, G6, G7, B6, B7, RSV)
19	RSV	Reverse Scan Function [H: Enable; L/NC: Disable]
20	NC/GND	Reserved for HIGHNESS internal test. Please treat it as NC.

Note 1: Input Signals shall be in low status when VDD is off.

Note 2: High stands for "3.3V", Low stands for "0V", NC stands for "No Connection".

Note 3: RSV stands for "Reserved".

Note 4: Input signals shall be in low status when VDD is off.

Note 5: If 6 bits mode, please keep the Pin 17 & Pin 18 NC or make sure that the Voltage of Pin 17 is always higher than the Voltage of Pin 18.

5.4 The Input Data Format

5.4.1 SEL68

Note: Output signals from any system shall be low or Hi-Z state when VDD is off.

5.5 TFT-LCD Interface Timing

5.5.1 Timing Characteristics

Signa	ıl	Symbol	Min.	Тур.	Max.	Unit
Clock Freq	uency	1/ T _{Clock}	50	65	80	MHz
	Period	Τv	776	806	1023	
Vertical	Active	T_{VD}	-	768	-	T _{Line}
Section	Blanking	Τ _{VB}	8	38	255	
	Period	Тн	1054	1344	2047	
Horizontal	Active	T _{HD}	-	1024	-	T _{Clock}
Section	Blanking	Т _{нв}	40	320	1023	

Note 1: Frame rate is 60 Hz. Note 2: DE mode.

5.5.2 Input Timing Diagram

5.6 Power ON/OFF Sequence

VDD power and lamp on/off sequence is as below. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Power ON/OFF sequence timing

Parameter	Min.	Тур.	Max.	Units
T1	0.5	-	10	[ms]
T2	30	40	50	[ms]
Т3	200	-	-	[ms]
T4	10	-	-	[ms]
Т5	10	-	-	[ms]
Т6	0	-	-	[ms]
Т7	10	-	-	[ms]
Т8	100	-	-	[ms]
Т9	0	16	50	[ms]
T10	-	-	10	[ms]
T11	1000	_	-	[ms]

The above on/off sequence should be applied to avoid abnormal function in the display. Please make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.

6. Connector & Pin Assignment Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

6.1 TFT-LCD Signal (CN1): LCD Connector

U ()	
Connector Name / Designation	Signal Connector
Manufacturer	STM or compatible
Connector Model Number	MSB240420-E or compatible
Adaptable Plug	P240420 or compatible

Pin No.	Symbol	Pin No.	Symbol
1	VDD	2	VDD
3	GND	4	SEL68
5	RIN0-	6	RIN0+
7	GND	8	RIN1-
9	RIN1+	10	GND
11	RIN2-	12	RIN2+
13	GND	14	CLKIN-
15	CLKIN+	16	GND
17	RIN3-	18	RIN3+
19	RSV	20	NC/GND

6.2 LED Backlight Unit (CN2): Driver Connector

Connector Name / Designation	Lamp Connector
Manufacturer	ENTERY or compatible
Connector Model Number	3808K-F05N-02R or compatible
Mating Model Number	H208K–P05N-02B or compatible

Pin No.	symbol	description
Pin1	VCC	12V input
Pin2	GND	GND
Pin3	On/OFF	5V-ON,0V-OFF
Pin4	Dimming	PWM
Pin5	NA	

6.3 LED Backlight Unit (CN4): Light bar Connector

Connector Name / Designation	Lamp Connector
Manufacturer	ENTERY or compatible
Connector Model Number	H208K–P03N-02B or compatible
Mating Model Number (CN3)	3808K-F03N-02R or compatible

Pin No.	symbol	description	Color
Pin1	Н	LED anode	Red
Pin2	L	LED cathode	White
Pin3	L	LED cathode	Black

7. Reliability Test Criteria

Items	Required Condition		
Temperature Humidity Bias	40 ° C, 90%RH, 300 hours		
High Temperature Operation	85 ° C, 300 hours		
Low Temperature Operation	-30 ° C, 300 hours		
Hot Storage	85 ° C, 300 hours		
Cold Storage	-30 ° C, 300 hours		
Thermal Shock Test	-20 ° C / 30 min, 60 ° C / 30 min, 100cycles, 40 C minimum ramp rate		
Hot Start Test	85 °C / 1Hr min. power on/off per 5 minutes, 5 times		
Cold Start Test	-30 ° C / 1Hr min. power on/off per 5 minutes, 5 times		
Shock Test (Non-Operating)	50G, 20ms, Half-sine wave, (±X, ±Y, ±Z)		
Vibration Test (Non-Operating)	1.5G, (10~200Hz, Sine wave)		
	30 mins/axis, 3 direction (X, Y, Z)		
On/off test	On/10 sec, Off/10 sec, 30,000 cycles		
ESD	Contact Discharge: ± 8KV, 150pF(330Ω) 1sec, 8 points, 25 times/ point	Note 1	
	Air Discharge: ± 15KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point		
EMI	30-230 MHz, limit 30 dBu V/m, 230-1000 MHz, limit 37 dBu V/m		

Note1: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost

Self-recoverable. No hardware failures.

Note2:

- Water condensation is not allowed for each test items.
- Each test is done by new TFT-LCD module. Don't use the same TFT-LCD module repeatedly for reliability test.
- The reliability test is performed only to examine the TFT-LCD module capability.
- To inspect TFT-LCD module after reliability test, please store it at room temperature and room humidity for 24 hours at least in advance.

8. Mechanical Characteristics8.1 LCM Outline Dimension (Front View)

8.2 LCM Outline Dimension (Rear View)

9. Display Label.

