

**VACUUM FLUORESCENT DISPLAY
MODULE**

SPECIFICATION

MODEL : CU20027-UX2J

SPECIFICATION NO. : DS-1771-0001-00

DATE OF ISSUE : Aug 24, 2012 (00)

REVISION :

:

:

:

PUBLISHED BY

NORITAKE ITRON CORP. / JAPAN
<http://www.noritake-itron.jp>

This specification is subject to change without prior notice.

This product complies with RoHS Directive 2011/65/EU

Index

1	General Description	2
1.1	Application.....	2
1.2	Construction	2
1.3	Scope	2
1.4	Weight	2
2	Absolute Maximum Ratings	2
3	Electrical Ratings	2
4	Electrical Characteristics	2
5	Optical Characteristics.....	3
6	Environmental Conditions	3
7	Block Diagram	3
8	Functional Descriptions	4
8.1	Instruction table	4
8.2	Display Clear.....	5
8.3	Cursor Home.....	5
8.4	Entry Mode Set	6
8.5	Display ON/OFF	7
8.6	Cursor/Display Shift.....	7
8.7	Function Set	8
8.7.1	Function Set Command.....	8
8.8	Set CG RAM Address.....	8
8.9	Set DD RAM Address	9
8.10	Write Data	9
9	Other features.....	10
9.1	CG RAM	10
10	Character Font.....	11
10.1	Katakana character font	11
10.2	European character font.....	12
10.3	Power-on reset.....	13
11	Serial Data Transfer.....	13
11.1	Serial data transfer	13
11.2	Command Transfer Protocol	14
11.3	Serial Interface Timing	14
12	Connector Pin assignment	15
13	Jumper	15
13.1	Font Table Select.....	15
13.2	Reserved.....	15
14	Outline dimension	16
Notice for the Cautious Handling of VFD Modules		17
Revision history		18

1 General Description

- 1.1 Application : Readout of computer, micro-computer, communication terminal and automatic instruments.
- 1.2 Construction : Single board display module consists of 40 characters (2x20) VFD, a controller which includes character generator ROM, RAM and DC/DC converter.
- 1.3 Scope : Interface is synchronous serial.
+5V single power supply is required.
- 1.4 Weight : About 48 g

2 Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Power Supply Voltage	V_{CC}	0	—	5.5	V_{DC}	—
Logic Input Voltage	V_I	0	—	$V_{CC}+0.3$	V_{DC}	—

3 Electrical Ratings

Measuring Conditions: TA (Ambient temperature) = 25 degree

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Logic Input Voltage DATA, CLOCK	"H"	V_{IH}	2.0	—	V_{CC}	$V_{CC} - V_{SS}$ = 5.0V
	"L"	V_{IL}	V_{SS}	—	0.8	
Power supply Voltage	$V_{CC}-V_{SS}$	4.75	5.00	5.25	V_{DC}	—

4 Electrical Characteristics

Measuring Conditions: TA (Ambient temperature) = 25degree, $V_{CC} = 5.0V_{DC}$

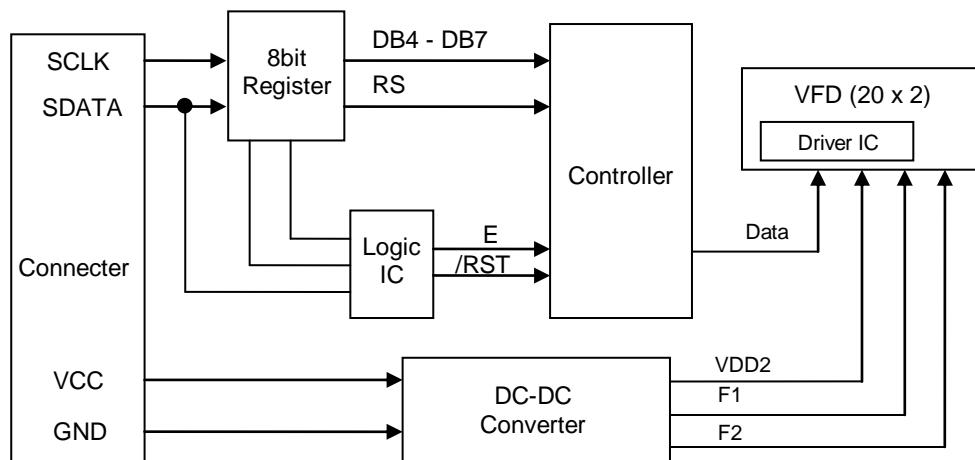
Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Power Supply Current 1	I_{CC1}	—	440	570	mA	(1)
Power Supply Current 2	I_{CC2}	—	320	420	mA	(2)
Power Consumption		—	2.2	2.85	W	(1)

Note:

(1) I_{CC1} is the current when all dots in the display are on.

(2) I_{CC2} is the current when all dots in the display are off.

Note: A slow start power supply may cause erroneous operation. I_{CC} can be approximately twice the specified supply current at power on.


5 Optical Characteristics

Number of characters	:	40 (2 lines×20 chars)
Matrix format	:	5×8 dot
Display area	:	73.4×14.97 mm (X×Y)
Character size	:	2.72×7.19 mm (X×Y)
Character pitch	:	3.72 mm
Line pitch	:	7.81 mm
Dot size	:	0.44×0.785 mm (X×Y)
Dot pitch	:	0.57×0.915 mm (X×Y)
Luminance	:	Minimum: 1750 cd/m ² Typically: 3500 cd/m ² (100% brightness)
Color of illumination	:	Green (Blue-green)

6 Environmental Conditions

Operating temperature	:	-40 to +85 degree
Storage temperature	:	-40 to +85 degree
Operating humidity	:	20 to 80 % RH (Non condensation)
Vibration (non-operating)	:	10-55-10Hz, all amplitude 1mm, X-Y-Z, 30 minutes
Shock (non-operating)	:	539 m/s ² , 10ms, X-Y-Z, 3 times each direction

7 Block Diagram

8 Functional Descriptions

8.1 Instruction table

Instruction	CODE									Description
	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Display Clear	0	0	0	0	0	0	0	0	1	Clears all display and sets DD RAM address 0 in the address counter.
Cursor Home	0	0	0	0	0	0	0	1	*	Sets DD RAM address 0 in the address counter. Also returns the display being shifted to the original position. DD RAM contents remain unchanged.
Entry Mode Set	0	0	0	0	0	0	1	I/D	S	Sets the cursor direction and specifies display shift. These operations are performed during writing/reading data.
Display ON/OFF Control	0	0	0	0	0	1	D	C	B	Sets all display ON/OFF(D), cursor ON/OFF(C), cursor blink of character position (B).
Cursor or Display Shift	0	0	0	0	1	S/C	R/L	*	*	Shifts display or cursor, keeping DD RAM contents.
Function Set	0	0	0	1	IF	*	*	BR1	BR0	Sets data length (IF).
CG RAM Address setting	0	0	1	ACG						Sets the CG RAM address.
DD RAM Address setting	0	1	ADD						Sets the DD RAM address.	
Data Writing to CG or DD RAM	1	Data writing								Writes data into CG RAM or DD RAM.
	I/D = 1	:	Increment			IF = 1	: 8-bits			
	I/D = 0	:	Decrement			IF = 0	: 4-bits			
	S = 1	:	Display shift enabled							
	S = 0	:	Cursor shift enabled							
	S/C = 1	:	Display shift							
	S/C = 0	:	Cursor move							
	R/L = 1	:	Shift to the right							
	R/L = 0	:	Shift to the left							
	BR1, BR0 =		00 : 100%							
			01 : 75%							
			10 : 50%							
			11 : 25%							

Note:

*: Don't care.

8.2 Display Clear

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	0	0	0	0	1	01H

RS=0

This instruction

1. Fills all locations in the display data (DD) RAM with 20H (Blank character).
2. Clears the contents of the address counter to 0H.
3. Sets the display for zero character shift.
4. Sets the address counter to point to the DD RAM.
5. If the cursor is displayed, the cursor moves to the left most character in the top line (Line 1).
6. Sets the address counter to increment on each access of DD RAM or CG RAM.

8.3 Cursor Home

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	0	0	0	1	*	02H to 03H

RS=0

*: Don't care.

This instruction

1. Clears the contents of the address counter to 0H.
2. Sets the address counter to point to the DD RAM.
3. Sets the display for zero character shift.
4. If the cursor is displayed, moves the left most character in the top line (Line 1).

8.4 Entry Mode Set

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	0	0	1	I/D	S	04H to 07H

RS=0

The I/D bit selects the way in which the contents of the address counter are modified after every access to DD RAM or CG RAM.

I/D=1: The address counter is increment.

I/D=0: The address counter is decrement.

The S bit enables display shifts instead of cursor shift, after each write or read to the DD RAM.

S=1: Display shift enabled.

S=0: Cursor shift enabled.

The direction in which the display is shifted is opposite in sense to that of the cursor. For example if S=0 and I/D=1, the cursor would shift one character to the right after a CPU writes to DD RAM. However if S=1 and I/D=1, the display would shift one character to the left and the cursor would maintain its position on the panel.

The cursor will already be shifted in the direction selected by I/D during reads of the DD RAM, irrespective of the value of S. Similarly reading and writing the CG RAM always shifts the cursor. Also both lines are shifted simultaneously.

Cursor move and Display shift by the "Entry Mode Set"

I/D	S	After writing DD RAM data	After reading DD RAM data
0	0	The cursor moves one character to the left.	The cursor moves one character to the left.
1	0	The cursor moves one character to the right.	The cursor moves one character to the right.
0	1	The display shifts one character to the right without	The cursor moves one character to the left.
1	1	The display shifts one character to the left without	The cursor moves one character to the right.

8.5 Display ON/OFF

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	0	1	D	C	B	08H to 0FH

RS=0

This instruction controls various features of the display.

The D bit turns the entire display on or off.

D=1: Display on

D=0: Display off

Note: When display is turned off, power converter is also inhibited and reduces a power consumption.

The C bit turns the cursor on or off.

C=1: Cursor on

C=0: Cursor off

The B bit enables blinking of the character the cursor coincides with.

B=1: Blinking on

B=0: Blinking off

Blinking is achieved by alternating between a normal and all on display of a character.

The cursor blinks with a frequency of about 1Hz and DUTY 50%.

8.6 Cursor/Display Shift

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	1	S/C	R/L	*	*	10H to 1FH

RS=0

*: Don't care.

This instruction shifts the display and/or moves the cursor, on character to either left or right, without neither reading nor writing DD RAM.

The S/C bit selects movement of the cursor or movement of both the cursor and the display.

S/C=1: Shift both cursor and display.

S/C=0: Shift cursor only.

The R/L bit selects left ward or right ward movement of the display and/or cursor.

R/L=1: Shift one character right.

R/L=0: Shift one character left.

Cursor move and Display shift by the "Cursor/Display Shift"

S/C	R/L	Cursor shift	Display shift
0	0	Move one character to the left	No shift
0	1	Move one character to the right	No shift
1	0	Shift one character to left with display	Shift one character to the left
1	1	Shift one character to right with display	Shift one character to the right

8.7 Function Set

This command sets width of data bus line by itself, and sets screen brightness by following one byte data.

8.7.1 Function Set Command

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	1	IF	*	*	BR1	BR0	20H to 3FH

RS=0

*: Don't care.

This instruction initializes the system, and must be the first instruction executed after power-on.

Must be select the 4-bit bus of interface by the IF bit.

IF=1: 8-bit CPU interface using DB7 to DB0 (Default)

IF=0: 4-bit CPU interface using DB7 to DB4

BR1	BR0	Brightness
-----	-----	-----
0	0	100 % (Default)
0	1	75 %
1	0	50 %
1	1	25 %

8.8 Set CG RAM Address

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	1			ACG				40H to 7FH

RS=0

This instruction

1. Loads a new 6-bit address into the address counter.
2. Sets the address counter to address CG RAM.

Once "Set CG RAM Address" has been executed, the contents of the address counter will be automatically modified after every access of CG RAM, as determined by the "8.4 Entry Mode Set" instruction. The active width of the address counter, when it is addressing CG RAM, is 6-bits so the counter will wrap around to 00H from 3FH if more than 64 bytes of data are written to CG RAM.

8.9 Set DD RAM Address

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1							ADD

RS=0

80H to A7H (1 line), C0H to E7H (2 line)

This instruction

1. Loads a new 7-bit address into the address counter.
2. Sets the address counter to point to the DD RAM.

Once the "Set DD RAM Address" instruction has been executed, the contents of the address counter will be automatically modified after each access of DD RAM, as selected by the "8.4 Entry Mode Set" instruction.

Valid DD RAM Address (ADD) Range

	Number of Characters	Address
1st line	40	00H to 27H
2nd line	40	40H to 67H

8.10 Write Data

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
							DATA WRITE

RS=1

00H to FFH

This instruction writes the data in DB7 to DB0 into either the CG RAM or the DD RAM. The RAM space (CG or DD), and the address in that space, that is accessed depends on whether a "Set CG RAM Address" or a "Set DD RAM Address" instruction was last executed, and on the parameters of that instruction. The contents of the address counter will be automatically modified after each "Write Data", as determined by the "8.4 Entry Mode Set". When data is written to the CG RAM, the DB7, DB6 and DB5 bits are not displayed as characters.

9 Other features

9.1 CG RAM

The display module has CG RAM of 320 bit = (5×8 bit /char) × 8 chars which is for user definable character fonts. The character fonts consist of 5×8 dots. The number 1-40 corresponds to character fonts.

Character code	CG RAM address						CG RAM data (character pattern)							
	DB5	DB4	DB3	DB2	DB1	DB0	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
00H or (08H)	0	0	0	0	0	0	*	*	*	1	2	3	4	5
	0	0	0	0	0	1	*	*	*	6	7	8	9	10
	0	0	0	0	1	0	*	*	*	11	12	13	14	15
	0	0	0	0	1	1	*	*	*	16	17	18	19	20
	0	0	0	1	0	0	*	*	*	21	22	23	24	25
	0	0	0	1	0	1	*	*	*	26	27	28	29	30
	0	0	0	1	1	0	*	*	*	31	32	33	34	35
	0	0	0	1	1	1	*	*	*	36	37	38	39	40
01H or (09H)	0	0	1	0	0	0	*	*	*	1	2	3	4	5
	0	0	1	0	0	1	*	*	*	6	7	8	9	10
	0	0	1	0	1	0	*	*	*	11	12	13	14	15
	0	0	1	0	1	1	*	*	*	16	17	18	19	20
	0	0	1	1	0	0	*	*	*	21	22	23	24	25
	0	0	1	1	0	1	*	*	*	26	27	28	29	30
	0	0	1	1	1	0	*	*	*	31	32	33	34	35
	0	0	1	1	1	1	*	*	*	36	37	38	39	40

REMARKS; "*": Don't care. "0": Turned off. "1": Turned on.

Dot assignment

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35
36	37	38	39	40

10 Character Font

Note: Font number 00-07Hex (08-0FHex) is User Definable Character Fonts.

10.1 Katakana character font

	0	1	2	3	4	5	6	7	8	9	Ⓐ	Ⓑ	Ⓒ	Ⓓ	Ⓔ	Ⓕ
	x H															
x0H	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
x1H	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
x2H	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
x3H	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
x4H	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
x5H	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
x6H	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
x7H	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
x8H	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
x9H	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
xAH	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
xBH	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
xCB	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
xDH	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
xEH	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.
xFH	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.	。.

Font : G58013.cg

10.2 European character font

	0 x H	1 x H	2 x H	3 x H	4 x H	5 x H	6 x H	7 x H	8 x H	9 x H	А x H	В x H	С x H	Д x H	Е x H	Ф x H
x0H	♪	♪	♪	♪	♪	♪	♪	♪	♪	♪	♪	♪	♪	♪	♪	♪
x1H	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
x2H	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
x3H	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
x4H	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
x5H	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
x6H	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
x7H	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
x8H	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
x9H	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
xAH	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
xBH	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
xCB	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
xDH	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
xEH	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶
xFH	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶	¶

Font : CG58014.cg

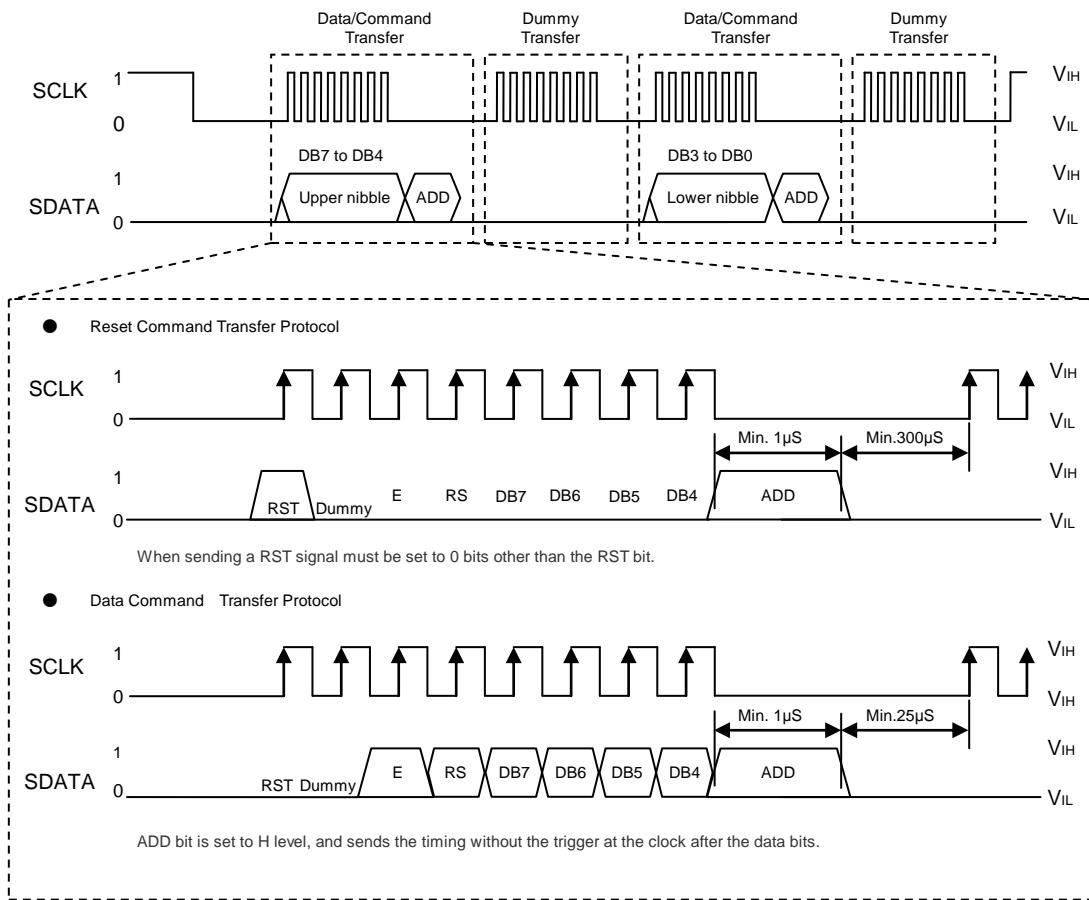
10.3 Power-on reset

Internal status of the module is initialized, when the controller detects the rising of power supply up. The statuses are as follows:

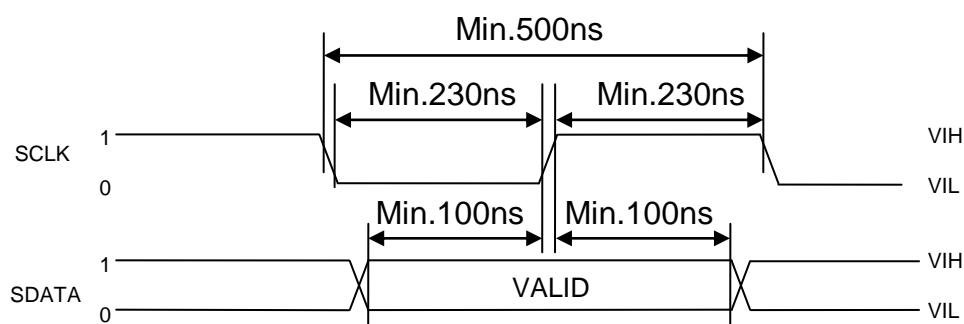
1. Display clear
Fills the DD RAM with 20Hex (Space code).
2. Sets the address counter to 0H.
Sets the address counter to point the DD RAM.
3. Display ON/OFF
D=0: Display OFF
C=0: Cursor OFF
B=0: Blink OFF

4. Entry Mode Set
I/D=1: Increment (+1)
S=0: No display shift
5. Function Set
IF=1: 8-bit interface
6. Brightness Control
BR0=BR1=0: 100%

11 Serial Data Transfer


11.1 Serial data transfer

Serial data can be inputted when the Strobe goes to “0”.


Serial data consists of 2 bytes. The first byte (Start Byte) consists of a total of 8 bits: the Synchronous bits (bit1-bit4), RS (bit5), E (bit6), Dummy (bit7) and RST(bit8). The register is selected (Instruction Register or Data Register) by the RS (bit7). RS is “0” in Instruction Register, and it is “1” in Data Register. The data write is selected by E (bit6). Must be send the dummy data after each data command sent. E is “0” when the data is written.

	0	1
E	Disable	Enable
RS	Instruction Register	Data Register

11.2 Command Transfer Protocol

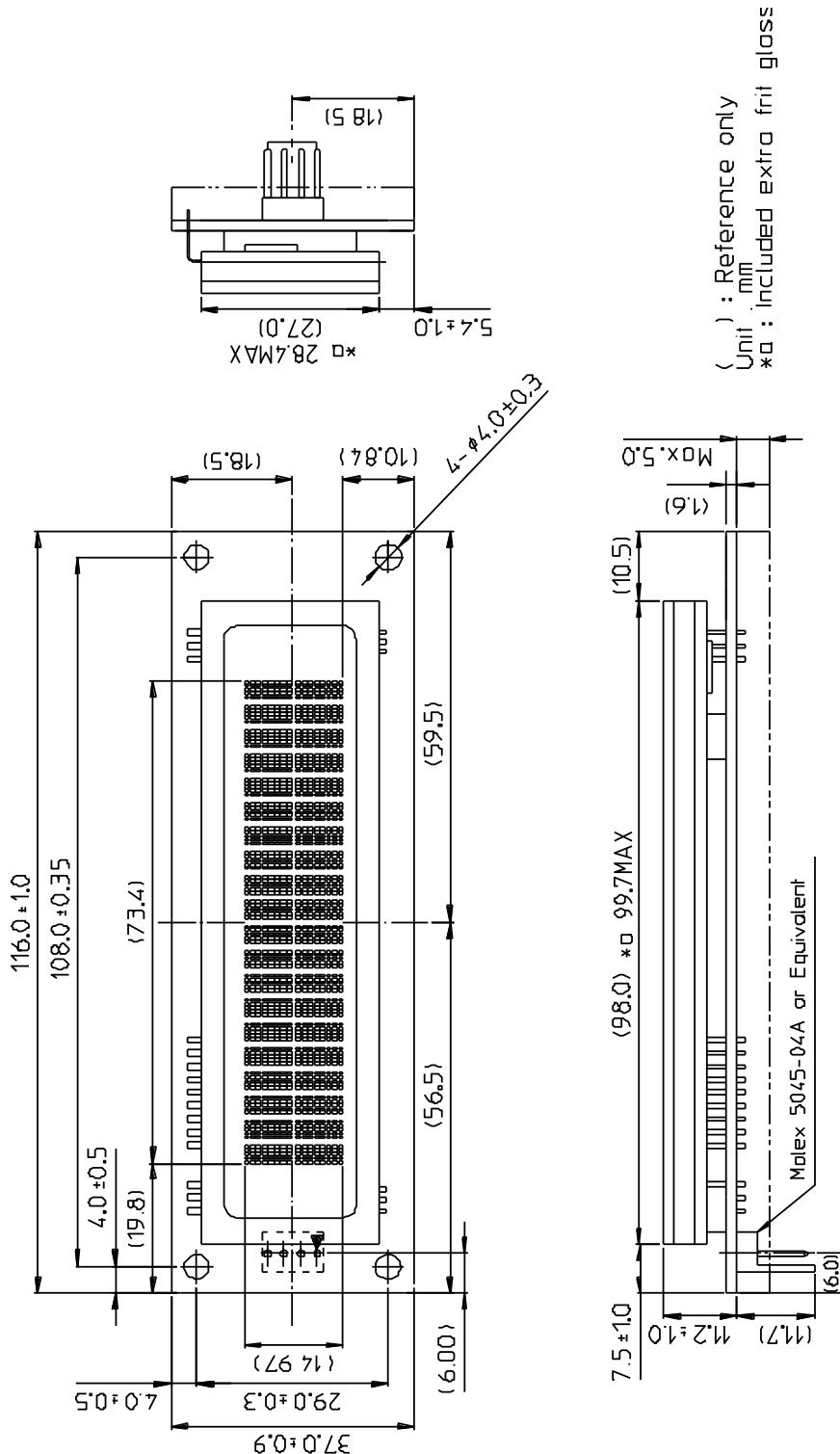
11.3 Serial Interface Timing

12 Connector Pin assignment

4pin Connector (CN1) for serial interface

Pin No.	Signal name	Function	Direction
1	VCC	Power supply	Input
2	SCLK	Clock	Input
3	SDATA	Data	Input
4	GND	Ground	Input

13 Jumper


No.	Function	Default
J0	Character Fonts Selection	OPEN
J1	Reserved	OPEN

13.1 Font Table Select

J0	Function
OPEN	Katakana Font
SHORT	European Font

13.2 Reserved

J1	Function
OPEN	-
SHORT	-

Notice for the Cautious Handling of VFD Modules

Handling and Usage Precautions:

Please carefully follow the appropriate product application notes and operation standards for proper usage, safe handling, and maximum performance.

[VFD tubes are made of glass]

- The edges of the VFD glass envelope are not smooth, so it is necessary to handle carefully to avoid injuries to hands.
- Use caution to avoid breaking the VFD glass envelope, to prevent injury from sharp glass particles.
- The tip of the exhaust pipe is fragile so avoid shock from impact.
- It is recommended to allow sufficient open space surrounding the exhaust pipe to avoid possible damage.
- Please design the PCB for the VFD module within 0.3 mm warping tolerance to avoid any forces that may damage the display due to PCB distortion causing a breakdown of the electrical circuit leading to VFD failure.

[High voltage]

- Avoid touching conductive electrical parts, because the VFD module uses high voltage exceeding 30 – 100 volts.
- Even when electric power is turned off, it may take more than one minute for the electrical current to discharge.

[Cable connection]

- Do not unplug the power and/or data cables of VFD modules during operation, because unrecoverable damage may result.
- Sending input signals to the VFD module when not powered can cause I/O port damage.
- It is recommended to use a 30cm or shorter signal cable to prevent functional failures.

[Electrostatic charge]

- VFD modules need electrostatic-free packaging and protection from electrostatic charges during handling and usage.

[Structure]

- During operation, VFD and VFD modules generate heat. Please consider sufficient heat radiation dissipation using heat sink solutions.
- Preferably, use UL-grade materials or components in conjunction with VFD modules.
- Warp and twist movement causes stress and may break VFDs and VFD modules. Please adhere to allowances within 0.3mm at the point of attachment.

[Power]

- Apply regulated power to the VFD module within specified voltages to protect from failures.
- VFD modules may draw in-rush current exceeding twice the typical current at power-on, so a power supply with sufficient capacity and quick starting of the power regulator is recommended.
- VFD module needs a specified voltage at the point of connection. Please use an adequate power cable to avoid a decrease in voltage. As a safety measure, a fuse or other over-current protection is recommended.

[Operating consideration]

- Illuminating phosphor will decrease in brightness during extended operation. If a fixed pattern illuminates for an extended period (several hours), the phosphor efficiency will decrease compared to the non-operating phosphor, causing non-uniform brightness. Please consider programming the display patterns to use all phosphor segments evenly. Scrolling may be a consideration for a period of time to refresh the phosphor condition and improve even illumination of the pixels.
- A signal cable 30cm or less is recommended to avoid possible disturbances to the signal.

[Storage and operating environment]

- Please use VFD modules under the recommended specified environmental conditions. Salty, sulfuric and dusty environments may damage the VFD module even during storage.

[Disposal]

- VFD uses lead-containing materials (RoHS directive exempts these lead compounds in the glass for electronic devices). When discarding VFDs or VFD modules, please adhere to applicable laws and regulations.

[Other cautions]

- Although the VFD module is designed to be protected from electrical noise, please plan your circuitry to exclude as much noise as possible.
- Do not reconstruct or repair the VFD module without our authorization. We cannot assure the quality or reliability of unauthorized reconstructed VFD modules.

Notice:

- We do not authorize the use of any patents that may be inherent in these specifications.
- Neither whole nor partial copying of these specifications is permitted without our approval. If necessary, please ask for assistance from our sales consultant.
- This product is not designed for military, aerospace, medical or other life-critical applications. If you choose to use this product for these applications, please ask us for prior consultation or we cannot accept responsibility for problems that may occur.

MBBZ-009-S18A

Revision history

Spec. number	Date	Revision
DS-1771-0001-00	Aug.24, 2012	Initial issue